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We study the torus partition functions of current-current deformed WZW models in two

dimensions. We decompose the WZW partition function as an orbifold sum of twisted

parafermion and boson partition functions and show the deformations only change the

twisted boson partition functions. Integrating over the boson moduli space defines an

ensemble-averaged CFT. We compute its partition function as a Poincaré series, which

suggests a 3D holographic gravity intepretation. We also calculate the density of states

of the averaged theory and show that it is positive.



Dedicated to my parents, Jinrong Dong and Qing Zheng.

ii



ACKNOWLEDGEMENTS

I would like to thank my advisor, Thomas Hartman, and my collaborator, Yikun Jiang,

on the thesis project. It would have been impossible to complete this project without

their frequent guidance and clear intuitions. Among the physics faculty members, I owe

a lot to Erich Mueller, Kyle Shen, Paul Ginsparg, Yuval Grossman, Maxim Perelstein
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CHAPTER 1

INTRODUCTION

The WZW model is one of the most famous 2D conformal field theories (CFT) and

one of the most tractable CFTs. It has established connections to all parts of theoretical

physics: it is the simplest quantum field theories to have a Lie group symmetry, and thus

contributed greatly to chiral perturbation theory in quantum chromodynamics[29, 30];

in condensed matter physics, it is closely tied to topological phases in spin chains and

the famous Haldane conjecture[1]; its connection to Chern-Simons theory also provides

us with the most basic example of bulk-edge correspondence [11].

It is thus interesting to explore the space of conformal field theories using the WZW

model as a starting point: after applying particular deformations to the WZW model we

get a whole moduli space of CFTs. Such explorations are generally hard to investigate

because deforming a CFT by an operator can violently change the algebraic structure of

its operators.

In this thesis we explore moduli spaces in which the algebraic structure of the CFT is

tractable. The entire moduli space can be reached by deforming the WZW model with

current-current operators corresponding to symmetries in the Cartan subalgebra[12].

Not only are these deformations marginal so that they are renormalization group (RG)

flow fixed points, they also preserve the operator product expansion (OPE) coefficients

of the corresponding operators. These two special properties of the deformation help

us make more precise statements about the deformed theories. In particular, we can

analytically compute the partition functions of these theories.

In Ref. [12], it is shown that if we write the WZW model as an orbifold theory of a

parafermion theory and a free boson theory, then the current-current deformations only
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change the partition function of the bosons, while leaving the parafermions invariant.

As far as the partition function is concerned, the moduli space of the current-current

deformed WZW model is locally isomorphic to the moduli space of the bosons, which

is well known.

Many mathematicians have made efforts to study the moduli space of the bosons. In

the mathematical context the bosonic partition function is closely related to the Siegel-

Narain theta function; it is a sum over a Narain lattice. The set of all the Narain lattices

is equivalent to the moduli space of the bosons. In the 1950s and the 1960s, Siegel

and Weil have made numerous efforts in studying the average of Siegel-Narain theta

function over the entire moduli space. Their result is called the Siegel-Weil formula

[24, 25, 27, 28] and it states that the average is an Eisenstein series. We interpret the

Siegel-Weil formula as a method of averaging partition functions of CFTs[2, 19, 9, 5].

Since the deformed WZW model can be written as an orbifold sum of a parafermion

theory and a bosonic theory, the averaged partition function is simply the orbifold sum of

a parafermion partition function and the averaged boson partition function by linearity.

In recent years, there has been evidence showing that gravitational theories might

be dual to an ensemble average of theories, the most famous of which might be the 2D

Jackiw-Teitelboim gravity/random matrix theory duality[8, 22, 23, 21]. In particular,

gravitational wormhole geometries, a source of the factorization problem, which con-

tribute to the gravitational path integral can be efficiently explained if the gravitational

theory is dual to an ensemble of theories. This idea was particularly important in the

partial resolution of the black hole information paradox; in particular, the final flattening

of the Page curve results from closely related configurations[3, 20]. We wish to general-

ize the previous AdS2/CFT1 duality to higher dimensions. Two previous works[2, 19],

of particular importance to this paper, used exactly the same framework to calculate the
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average of the free bosonic theory without the presence of parafermions; the final result

of the averaged partition function is equal to the partition function of an exotic 3D U(1)

Chern-Simons gravity theory without instanton configurations of fields. Ref. [2] also

uses the average density of states to extract the gap of such a theory, which they find

to be c/2πe in which c is the central charge. These dualities are special because unlike

traditional holographic examples, there is no fundamental microscopic principle to date

that explains the emergence of an ensemble averaged duality.

The central result of our computation is that the averaged partition function of the

deformed S U(N + 1)k WZW model can be written as a Poincaré series

〈ZWZW(τ)〉 =
∑

γ∈Γ/Γ0(∞)

∑
λ∈Ω+

k

|cλ0(γτ)|2 (1.1)

in which Γ = S L(2,Z), Γ0(∞) is the subgroup generated by the T transformation, and

cλµ is the string function of the S U(N + 1)k WZW model. The sum over modular images

strongly suggests the possible interpretation of the sum above as summing over topolo-

gies in 3D gravity. Furthermore, since the central charge of our model c =
k(N2+2N)

k+N+1 is

larger than N, the number of conserved currents, there is a more natural possibility to

construct a dual gravitational theory. If a dual topological gravitational theory is found,

its perturbative partition function must have the form

Zgrav(τ) =
∑
λ∈Ω+

k

|cλ0(τ)|2 (1.2)

In previous work [18], a similar Poincaré series was constructed using the Virasoro

vacuum character, which has the interpretation of summing over BTZ black holes in a

pure 3D gravity theory. However, that Poincaré series did not make sense as a CFT,

particularly because the density of states of the Poincaré series has negative values and

thus violates unitarity. Various fixes, most recently adding conical defects, have been

applied in order to save unitarity[4]. In our work, we explicitly check that our theory

has positive density of states.
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The structure of the thesis is planned as follows. In Chapter 2 we give some pre-

requisites on affine Lie algebra and WZW models; in Chapter 3 we study the partition

function of the current-current deformed WZW models; in Chapter 4 we average over

the deformations.
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CHAPTER 2

S U(N + 1) WZW MODEL AND AFFINE LIE ALGEBRA PREREQUISITES

In this section, we will introduce the basic techniques necessary to understand the

S U(N + 1) WZW model and its characters. In particular, we will first understand the

structure of the su(N + 1) Lie algebra, and then the ŝu(N + 1) Lie algebra, which will

finally lead to the S U(N + 1) WZW model. This chapter will follow Chapters 13-15 of

Ref. [10] closely.

2.1 Structure of the su(N + 1) Lie algebra

A Lie algebra g is a vector space with an antisymmetric commutator [ , ] satisfying the

Jacobi identity:

[X, [Y,Z]] + [Z, [X,Y]] + [Y, [Z, X]] = 0, ∀X,Y,Z ∈ g (2.1)

In particular, if we consider a set of generators {Ja} of the Lie algebra, we can define the

structure constants f ab
c

[Ja, Jb] =
∑

c

i f ab
c Jc (2.2)

These structure constants characterize the Lie algebra.

The Cartan subalgebra h of g is defined as the maximal set of commuting generators

Hi ∈ g s.t.

[Hi,H j] = 0 (2.3)

dim h = r is called the rank of the Lie group. The remaining generators can be organized

into ladder operators that correspond to particular roots: α = (α1, . . . , αr) is a root and

Eα the corresponding ladder operator if

[Hi, Eα] = αiEα (2.4)
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The lattice generated by all the roots α is called the root lattice Q. g is spanned by the

Cartan subalgebra and the set of ladder operators: they form a complete basis of the Lie

algebra. There is a natural metric K called the Killing form on the Lie algebra:

K(X,Y) =
1

2g
Tr(adXadY) (2.5)

in which adX(Y) = [X,Y], and g is the dual Coxeter number of the Lie algebra. The

trace is over the standard basis {Ja} of the Lie algebra. We normalize the generators

such that

K(Hi,H j) = δi j (2.6)

and

K(Eα, E−α) =
2
|α|2

(2.7)

with all the other entries 0.

Consider a representation of the Lie algebra g. A basis {|λ〉} can always be found

such that

Hi |λ〉 = λi |λ〉 (2.8)

The vector λ = (λ1, . . . , λr) is called a weight; the weights generate the weight lattice

P; P is dual to the lattice of long roots, Q∨. Since the Killing form of the Lie algebra

has integer entries, roots are special weights, that is, Q ⊂ P. One can interpret the λ as

living in the dual space of the root, meaning λ(Hi) = λi. Next, we will classify all the

weights of g.

If one fixes a basis {βi} of roots, all roots can be written as

α =
∑

i

niβi (2.9)

α is positive if the first nonzero coordinate is positive; νi is called simple if it cannot

be written as the sum of two positive roots. The set {νi} has cardinality r and forms a
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natural basis of Q. The corresponding coroots of the simple roots are defined as

ν∨i =
2νi

|νi|
2 (2.10)

An important root called the highest root of g is denoted θ defined as

θ =
∑

i

miνi =
∑

i

ai∨ν∨i (2.11)

in which the sum
∑

mi is maximized. g =
∑

ai∨ is called the dual Coxeter number.

There is a bilinear form on the root lattice called the Cartan matrix:

Ai j = (νi, ν
∨
j ) (2.12)

in which the dot product is induced by the Killing form. Although the weights can

be expanded in the basis of the simple roots, the coefficients are not integers. A more

convenient basis {ωi} is the dual basis of {ν∨j }:

(ωi, ν∨j ) = δi
j (2.13)

ωi are called the fundamental weights. A weight λ can be expressed as

λ =
∑

i

λiω
i (2.14)

From now on whenever we say λ = (λ1, . . . , λr) we mean its coordinate in the funda-

mental weight basis. λi take values in Z. A particularly important weight called the

Weyl vector ρ is defined as

ρ =
∑

i

ωi (2.15)

The dot products between the fundamental weights are defined as

F i j = (ωi, ω j) (2.16)

in which F is called the quadratic form matrix. The relationship between F and A is

F i j = (A−1)i j |ν j|
2

2
(2.17)
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The Weyl group W of g characterizes the symmetry for both lattices P and Q. For

any element w ∈ W, w can be decomposed as

w = sα . . . sβ (2.18)

in which sα are called the Weyl reflections

sαλ = λ − (α∨, λ)α (2.19)

They reflect weights in the direction of the root. ε(w) = det(w) reflects the parity of the

Weyl group element.

Any irreducible representation of the Lie algebra has a highest weight state |λ〉, such

that

Eα |λ〉 = 0, ∀α > 0 (2.20)

All the other states in the irreducible representation can be generated by repeatedly

applying combinations of ladder operators on |λ〉.

Since we are only concerned about the su(N) Lie algebra, it is worth instantiating

the abstract concepts we illustrated above.

X ∈ su(N + 1) if

X† = X,Tr(X) = 0 (2.21)

The Cartan subalgebra h is given by the diagonal matrices in g. The dimension of the

Cartan subalgebra is N. All simple roots are long; that is, |νi|
2 = 2, and ν∨i = νi. The
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highest root θ is
∑

i νi. The Cartan matrix is

A =



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 2 −1

0 0 0 . . . −1 2



(2.22)

Sometimes the Cartan matrix is also called the Killing form because the Killing form

restricted to the Cartan subalgebra h in a particular basis called the Chevalley basis is

exactly this Cartan matrix.

It is easy to prove using induction that det A = N + 1. This determinant gives the

square volume of the unit cell of the root lattice. Hence, |P/Q| = N + 1, an identity that

will prove to be useful below.

For computational purposes, it is useful to come up with an explicit embedding of

{νi} into RN+1, in the hyperplane perpendicular to the vector (1, . . . , 1). The embedding

is
ν1 = (1,−1, 0, 0, . . . );

ν2 = (0, 1,−1, 0, . . . );

. . .

νN = (0, 0, . . . , 1,−1).

(2.23)
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2.2 Structure of the ŝu(N + 1) affine Lie algebra

An affine Lie algebra ĝ is a central extension of the loop algebra g̃ = g ⊗ C[t, t−1]. with

the following commutation relations:

[Ja ⊗ tn, Jb ⊗ tm] =
∑

c

i f ab
c Jc ⊗ tn+m + k̂nK(Ja, Jb)δn+m,0 (2.24)

in which k̂ is a new element added into the algebra in the central extension that commutes

with all the Ja ⊗ tn elements. Define Ja
n = Ja ⊗ tn. Obviously {Hi

0} ∪ {k̂} is an abelian

subalgebra; it is not maximal because the eigenvector (α, 0) appears infinitely many

times in the adjoint representation, in which α is a root of the original Lie algebra. We

define

L0 = −t
d
dt

(2.25)

to break this degeneracy. The commutation relation is

[L0, Ja
n] = −nJa

n (2.26)

The resulting algebra

ĝ = g̃ ⊕ Ck̂ ⊕ CL0 (2.27)

is called an affine Lie algebra, with the maximal Cartan subalgebra {Hi
0} ∪ {k̂} ∪ {L0}.

Similarly the affine Lie algebras also have their Killing forms, roots and weights.

The Killing form is defined as

K(Ja
n , J

b
m) = δabδa+b,0, K(L0, k̂) = −1 (2.28)

with all other entries zero. Define an affine weight λ̂ to the the eigenvalues of a simulta-

neous eigenstate of the Cartan subalgebra:

λ̂ = (λ̂(H1
0), . . . , λ̂(Hr

0); λ̂(k̂); λ̂(−L0)) = (λ; kλ̂; nλ̂) (2.29)
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The first r components λ corresponds to a weight in the normal Lie algebra. The ex-

tended Killing form K induces the following inner product:

(λ̂, µ̂) = (λ, µ) + kλ̂nµ̂ + kµ̂nλ̂ (2.30)

Since k̂ commutes with all generators of ĝ its eigenvalue on the states of the adjoint

representation is zero. Hence affine roots have the form

β̂ = (β; 0; n) (2.31)

in which β is a root in the normal Lie algebra. Define the imaginary root

δ = (0; 0; 1) (2.32)

which has zero length.

Simple roots of the affine Lie algebras can be defined as ν̂0 = (θ; 0; 1) and ν̂i =

(νi; 0; 0). The associated coroots are ν̂∨0 = ν̂0 and ν̂∨i = (ν∨i ; 0; 0). The fundamental

weights {ω̂i} are defined to be dual to the coroots:

ω̂0 = (0; 1; 0), ω̂i = (ωi; ai∨; 0) (2.33)

which satisfy the relation (ω̂i, ν̂∨j ) = δi
j.

Affine weights can thus be expended in terms of the affine fundamental weights and

δ:

λ̂ =
∑

i

λiω̂
i + `δ (2.34)

The level of a weight is defined to be

k ≡ λ̂(k̂) = (λ̂, δ) =
∑

i

ai∨λi (2.35)

And any weight in level k can be written as

λ̂ = (λ; k; `) (2.36)
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Using the two equations above we derive the important identity

λ0 = k − (λ, θ) (2.37)

The Dynkin labels of a weight track the coordinates of an affine weight without its

imaginary part. That is, if λ̂ =
∑
λiω̂

i + `δ, then we write

λ̂ = [λ0, λ1, . . . , λr] (2.38)

The affine Weyl vector is defined as

ρ̂ =
∑

i

ω̂i (2.39)

which will be important later when we calculate the characters.

The affine Weyl reflections are defined as

sα̂λ̂ = λ̂ − (λ̂, α̂∨)α̂ (2.40)

The relevant irreducible representations of ĝ are called integrable highest-weight

representations. There is a requirement that the highest weight |λ̂〉 in such a representa-

tion satisfy

k ∈ Z+, k ≥ (λ, θ) (2.41)

All the other states in such an irreducible representation can be produced via repeated

applications of ladder operators.

Again, we use ŝu(N + 1) as an example. Since ai∨ = 1 for su(N + 1), for λ̂ =

[λ0; λ1; . . . λN], the level is

k =
∑

i

λi (2.42)

And hence all the irreducible representations at level 2 can be listed as an example:

[2, 0, 0], [0, 2, 0], [0, 0, 2], [1, 1, 0], [1, 0, 1], [0, 1, 1]. We denote P+
k to be all the affine
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weights with nonnegative coordinates whose level are k. We note that (λ1, . . . , λN) de-

notes the finite part of λ̂. For fixed level k, all λ̂ ∈ P+
k correspond to su(N + 1) weights λ

with nonnegative Dynkin labels whose sums are less than or equal to k. We denote this

set of su(N + 1) weights by Ω+
k ; in short, Ω+

k contain the finite parts of affine roots of P+
k .

Another important automorphism of ŝu(N + 1) is called the outer automorphism

group O(ŝu(N + 1)) = ZN+1. Its generator a acts on the Dynkin labels as

a[λ0, λ1, . . . , λN , λN+1] = [λN+1, λ0, . . . , λN−1, λN] (2.43)

It can be proven that for all A ∈ O(ŝu(N + 1)),

Aλ̂ = k(A − 1)ω̂0 + wAλ̂ (2.44)

in which wA is a Weyl reflection. In other words, since amω̂0 = ω̂m,

amλ̂ = am(λ; k; nλ̂) = (wamλ + kωm; k; nanλ̂) (2.45)

Basically it applies a symmetry in the Weyl group to the finite part and then shifts it by

k times a fundamental root. This relation will be crucial below.

2.3 S U(N + 1)k WZW model and its characters

A S U(N + 1)k WZW model means a WZW model with S U(N + 1) symmetry and at

level k. It has infinitely many primary fields under the Virasoro symmetry, and generally

speaking in such models it’s hard to calculate the partition function. However, due to

the S U(N + 1) symmetry, we arrange the torus partition function into a finite sum of

characters over weights in P+
k :

ZWZW(τ) =
∑
λ̂∈P+

k

|χλ̂(τ)|2 (2.46)
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in which

χλ̂(τ) = Trλ̂e
2πiτ(L0−c/24) (2.47)

c = k dim g
k+g is the central charge of the model. For S U(N +1)k, c =

k(N2+2N)
k+N+1 . The definition

of the character is an intimidating equation: there are still infinitely many states in the

trace. However, there are two ways to compute this character. As usual, we define

q = e2πiτ. One is by the formula

χλ̂(q) =

∑
w∈W ε(w)θw(λ̂+ρ̂)(q)∑

w∈W ε(w)θwρ̂(q)
(2.48)

in which the θλ̂ are generalized theta functions defined as

θλ̂(q) =
∑
α∨∈Q∨

q
1
2k |kα

∨+λ|2 =
∑
α∈Q

q
1
2k |kα+λ|2 (2.49)

The second equality is true because we are in S U(N + 1) where all roots are long.

Another more useful way that will play a crucial role in the discussion is the de-

composition using string functions. Consider two weights λ̂ at level k and µ̂ = (µ; k; 0).

Since the level is fixed, we only keep track of the finite parts λ and µ. The string function

is defined as

cλ̂µ̂(q) = qmλ̂(µ̂)
∞∑

n=0

multλ̂(µ̂ − nδ)qn (2.50)

which has the following good properties

cλ̂wµ̂ = cλ̂µ̂, ∀w ∈ W

cAλ̂
Aµ̂ = cλ̂µ̂, ∀A ∈ O(ĝ)

(2.51)

and
cλµ = 0 if λ − µ < Q

cλµ+kδ = cλµ if δ ∈ Q
(2.52)

in which we changed notation: cλ̂µ̂ and cλµ mean the same thing. mλ̂(µ̂) is called the

relative modular anomaly defined as

mλ̂(µ̂) = mλ̂ −
|µ|2

2k
(2.53)
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in which µ is the finite part of µ̂. The modular anomaly mλ̂ is defined as

mλ̂ =
|λ + ρ|2

2(k + N)
−
|λ|2

2k
(2.54)

in which λ is the finite part of λ̂ and ρ is the Weyl vector defined before.

The most important property of the string functions is that it is the coefficient of the

decomposition of WZW characters at level k into theta functions:

χλ̂(q) = χ(λ;k;0)(q) =
∑

µ∈P/kQ

cλµ(q)θµ(q) (2.55)

in which

θµ(q) =
∑
α∈Q

q
1
2k |kα+µ|2 (2.56)

can be defined similarly, but with fixed level k.
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CHAPTER 3

CURRENT-CURRENT DEFORMATIONS OF THE WZW PARTITION

FUNCTION

In this chapter we focus on the current-current deformation of the S U(N + 1)k WZW

theory. As shown in Ref. [12], it is possible to deform by current-current operators

corresponding to the S U(N + 1) symmetry. However, since not all Lie algebra elements

commute with each other, some deformations are not marginal; the only marginal defor-

mations are the deformations by currents in an Abelian subalgebra[6]. This means that,

up to an isomorphism, the currents live in the Cartan subalgebra h = û(1)N .

We will first investigate a way to decompose the theory into an orbifold of ŝu(N +

1)k/û(1)N and û(1)N theories, and then find out how the û(1)N part of the theory gets

deformed.

3.1 WZW model as an orbifold theory

3.1.1 A decomposition of the partition function

The ŝu(N + 1)k/û(1)N theory is studied with great detail in Ref. [13], although with

many subtle details not clarified. It describes a parafermion theory, a particular any-

onic theory that contains nontrivial particle statistics. If N = 1, the theory reduces to

a Zk parafermion theory; when excitations twist around each other in this theory the

wavefunction gets an additional phase of e2πi/k. It is the simplest example of an abelian

anyon.
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The definition of the parafermion theory on the torus is

ZPF(q) = |η(q)|2N
∑
λ∈Ω+

k

∑
µ∈P/kP

|cλµ(q)|2 (3.1)

It has subtle differences with previous definitions of the parafermion partition functions.

As different conventions can lead to significant complications in the avaraging process,

we use this definition and reconcile with the usual convention in Refs. [12, 13] in the

appendix.

A more general partition function that we would like to consider is the twisted parti-

tion function. Given that we are calculating our partition functions on a torus, there are

different boundary conditions that one can impose on the torus. The torus we use has

period lattice generated by {1, τ}; we consider 1 as the spatial direction and τ as the tem-

poral direction. In general, one can impose twisted boundary conditions, with the twists

denoted by α and β in the τ and 1 directions respectively. We define the coordinates of

α and β as

α = αiνi, β = βiνi (3.2)

The twist measures how far we have deviated from the periodic boundary conditions, a

fact that will become clear in the next section.

We define the twisted partition function of the parafermions as

ZPF
α,β(q) = |η(q)|2N

∑
λ∈Ω+

k

∑
µ∈P/kP

e−πiα·(2µ−β)/k+πiαi(B1)i jβ
j/kcλµ(q)c̄λµ−β(q̄) (3.3)

in which B1 is a matrix closely tied to the Killing form:

(B1)i j =


Ki j, if i < j

0, if i = j

− Ki j, if i > j

(3.4)
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in which Ki j is the Killing form. For our Lie groups, this matrix has the following form:

B1 =



0 1 0 . . . 0

−1 0 1 . . . 0

0 −1 0 . . . 0

. . . . . . . . . 0 1

0 0 0 −1 0


(3.5)

α, β ∈ Q/kQ. We note that it again has subtle differences compared to the version in

Refs. [12, 13].

Since we have defined the twisted parafermion partition function corresponding to

the ŝu(N + 1)/û(1)N theory, it is natural to also define the twisted partition function for

the û(1)N theory. With our own conventions, the partition function is

Zb
α,β(q) = |η(q)|−2N

∑
µ∈P/kQ

eπiα·(2µ−β)/k−πiαi(B1)i jβ
j/kθµ(q)θ̄µ−β(q̄) (3.6)

By which we have the orbifold relation

ZWZW(q) =
1

|Q/kQ|

∑
α,β∈Q/kQ

ZPF
α,β(q)Zb

α,β(q) (3.7)
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The proof is as follows:

1
|Q/kQ|

∑
α,β∈Q/kQ

ZPF
α,β(q)Zb

α,β(q) =
1

|Q/kQ|

∑
α,β∈Q/kQ

∑
λ∈Ω+

k

∑
µ′∈P/kP

∑
µ∈P/kQ

eπiα·(2µ−2µ′)cλµ′(q)c̄λµ′−β(q̄)θµ(q)θ̄µ−β(q̄)

=
∑

β∈Q/kQ

∑
λ∈Ω+

k

∑
µ′∈P/kP

∑
µ∈P/kQ

δ(µ − µ′ ∈ kP)cλµ′(q)c̄λµ′−β(q̄)θµ(q)θ̄µ−β(q̄)

=
∑

β∈Q/kQ

∑
λ∈Ω+

k

∑
µ∈P/kQ

cλµ(q)c̄λµ−β(q̄)θµ(q)θ̄µ−β(q̄)

=
∑

β∈P/kQ

∑
λ∈Ω+

k

∑
µ∈P/kQ

cλµ(q)c̄λµ−β(q̄)θµ(q)θ̄µ−β(q̄)

=
∑
λ∈Ω+

k

∣∣∣∣∣∣∣ ∑
µ∈P/kQ

cλµ(q)θµ(q)

∣∣∣∣∣∣∣
2

=
∑
λ∈Ω+

k

|χλ(q)|2

= ZWZW(q)
(3.8)

In which δ(µ ∈ kP) means that if µ ∈ kP then the value is 1, and 0 otherwise. In line 4

we extended the range of the β summation because the string functions vanish if β < Q.

In the next section, we will study the twisted û(1)N partition function more carefully.

3.1.2 Partition function of the twisted û(1)N theory

To find out why α and β are called twists, we derive the twisted partition function for

a û(1)N theory. The û(1)N theory describes N compact free bosons, which makes it

extremely easy to calculate.

We consider a N dimensional Euclidean lattice L, generated by elements {ei}s. The

metric for the lattice L is ei · e j = Gi j; The dual lattice is generated by the dual basis {ei},
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which satisfy ei · e j = δi
j. We further consider the action

S =
1

2π

(
Gi j + Bi j

) ∫
d2z∂zΦ

i∂z̄Φ
j (3.9)

And Φi is identified with Φi + 2πni if ni ∈ Z. G and B both have real entries; however, G

is symmetric, while B is antisymmetric.

We suppose our torus is defined by vectors 1 and τ = τ1 + iτ2. Canonical homology

cycles A and B correspond to motions in the 1 and τ directions.

Zero modes Φi = Ciz + C̄iz̄ are marked by the following boundary conditions:∫
A

Ci +

∫
A

C̄i = 2πni,

∫
B

Ci +

∫
B

C̄i = 2πmi (3.10)

A twist by ã and b̃ means that one does not follow this prescription, but instead∫
A

Ci +

∫
A

C̄i = 2πni + 2πb̃i,

∫
B

Ci +

∫
B

C̄i = 2πmi + 2πãi (3.11)

in which

ã = ãiei, b̃ = b̃iei (3.12)

in which ãi, b̃i are coordinates of ã and b̃ in the lattice L. We can immediately solve

these equations:

Ci =
2πi

2Im(τ)
[(niτ̄ − mi) + b̃iτ̄ − ãi] (3.13)

We plug into the action

−S nm = −
π

2Im(τ)
(m+ã−τ1(n+b̃)+iτ2B·(n+b̃))2−iπτ1(n+b̃)·B·(n+b̃)−

πτ2

2
(B·(n+b̃))2−

πτ2

2
(n+b̃)2

(3.14)

in which all the dot products are done using the metric Gi j for the lattice coordinates and

the dual metric Gi j for the dual coordinates.

The classical path integral is done by summing over the zero modes:

Zb,cl
ã,b̃

=
∑

n,m∈L

exp(−S nm) (3.15)
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we perform Poisson summation in m:∑
ni,mi∈Z

exp(−S nm) ∝
∑

mi,ni∈Z

exp(−2πτ2miGi jm j + 2πimi(ãi − τ1(ni + b̃i) + iτ2Gi jB jk(nk + b̃k)))

exp
(
−
πτ2

2
((ni + b̃i)Gi j(n j + b̃ j) + (ni + b̃i)Bi jG jkBkl(nl + b̃l))

)
exp(−iπτ1(ni + b̃i)Bi j(n j + b̃ j))

(3.16)

Although the last term is explicitly one, we include it for the following purpose: once

we collect the three terms, we can write the total exponential as

Zb,cl
ã,b̃
∝

∑
mi,ni∈Z

exp(iπτγ2
+ − iπτ̄γ2

−) exp(2πim · ã) (3.17)

in which

γ± = (mi +
Bi j ±Gi j

2
(n j + b̃ j))ei (3.18)

This is an example of the Siegel-Narain theta function, defined in Ref. [17] as

ΘΛ(p, q, τ) = exp(πip · q)
∑
λ∈Λ+q

qλ
2
+/2q̄λ

2
−/2 exp(2πiλ · p) (3.19)

We will omit the first phase because p · q = 0 in all the calculations below, as we will

see later. The underlying lattice Λ is called the Narain lattice. The Narain lattice Λ has

dimension 2N with signature (N,N); a vector

γ =

 γ+

γ−

 (3.20)

belongs to Λ, in which γ+, γ− are both N dimensional vectors. The metric in this repre-

sentation is

S µν =

 I 0

0 −I

 (3.21)

A more useful basis is by defining

ê j =
1
2

 B jiei + e j

B jiei − e j

 , ê j =

 e j

e j

 (3.22)
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In which ê j · êi = δi
j, and all other dot products vanish. Hence, for the vector in Eq.

(3.18),

γ = niêi + wiêi + q = niêi + wiêi + b̃iêi (3.23)

in which b̃i is the coordinates of b̃ in the lattice L. Physically speaking, n is the momen-

tum and w is the winding of the states. We notice that in this basis, the lattice vectors

have integer coordinates. However, they explicitly depend on the choice of lattice L

and the magnetic field B; more importantly, noting that the theta function is invariant

under rotations of the lattice L, the most important components are the metric G and the

magnetic field B. They are called the moduli of the Narain lattice Λ.

Furthermore, if we take

p = ãiêi (3.24)

in which ãi are the coordinates of ã in the lattice L, then it’s easy to check that

Zb,cl
ã,b̃
∝ ΘΛ(ãiêi, b̃iêi, τ) (3.25)

We warn the reader that p, q are 2N dimensional vectors whose coordinates refer to the

Narain lattice basis, while ã and b̃ are N dimensional whose coordinates refer to the

basis of L. Since êi · ê j = 0, p · q = 0. The calculation of the quantum partition function

is standard and the result is

Zb
ã,b̃ = |η(q)|−2NΘΛ(ãiêi, b̃iêi, τ) (3.26)

We see that to establish a connection with the result before, we need to choose a partic-

ular lattice Λk and twists ã, b̃ such that the corresponding twisted Siegel-Narain Theta

function satisfies

ΘΛk(ã
iêi, b̃iêi, τ) =

∑
µ∈P/kQ

eπiα·(2µ−β)/k−πiαi(B1)i jβ
j/kθµ(q)θ̄µ−β(q̄) (3.27)
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First of all, we come up with choices of G and B. This choice has been developed by

Ref. [14] and reviewed in Ref. [16]. The choice is by taking

(Gk)i j = kKi j (3.28)

in which Ki j is the Killing form induced inner product of the roots, and

(Bk)i j =


(Gk)i j, if i < j

0, if i = j

− (Gk)i j, if i > j

(3.29)

Note that B1 = Bk/k. We emphasize that since Gk = kK, the lattice L is not the root

lattice Q; it is
√

kQ; the dual lattice L∗ = P/
√

k. And thus, the coordinates of ã and b̃

are not the ones we naively expect from the respective coordinates of α and β.

It is crucial to observe that ((Bk)i j ± (Gk)i j)/2 have k times integer entries. That

is, whenever we apply (Bk ± Gk)/2 to a root vector, it becomes k times a weight. In

particular, γL, γR in Eq. (3.18) are both weights divided by
√

k. Thus, the lattice Λk

corresponds to

Λk = {(x, x′) ∈ P/
√

k × P/
√

k|x− x′ ∈
√

kQ} =
1
√

k
{(x, x′) ∈ P× P|x− x′ ∈ kQ} (3.30)

We choose

ãi =
αi

k
, b̃i =

βi

k
(3.31)

And thus by the definition in Eq. (3.12),

ã = ãiei =
αi

k

(√
kνi

)
=

α
√

k
, b̃ = b̃iei =

βi

k

(√
kνi

)
=

β
√

k
(3.32)
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Thus

ΘΛk(
αiêi

k
,
βiêi

k
, τ) =

∑
λ∈Λ+βiêi/k

qλ
2
+/2q̄λ

2
−/2 exp(2πiλ ·

αiêi

k
)

=
∑

n∈
√

kQ,m∈P/
√

k

exp(iπτγ2
+ − iπτ̄γ2

−) exp(2πim · ã)

=
∑

m∈P/
√

k,n∈
√

kQ

qm2/2q̄(m−n−b̃)2/2 exp(2πi(mi − (Bk + Gk)i j(n j + b̃ j)/2) · ãi)

=
∑

m∈P,n∈Q

qm2/2kq̄(m−kn−β)2/2k exp(2πi(mi − (B1 + G1)i j(kn j + β j)/2) · αi/k)

=
∑

m∈P/kQ,n,n′∈Q

q(m+kn)2/2kq̄(m+kn′−β)2/2k exp(2πi(m − β/2) · α/k − πiαi(B1)i jβ
j/k)

=
∑

µ∈P/kQ

eπiα·(2µ−β)/k−πiαi(B1)i jβ
j/kθµ(q)θ̄µ−β(q̄)

(3.33)

3.2 Deformations and moduli space

It is shown in Ref. [12] that current-current deformations of the WZW model only

concerns the û(1)N part of the theory. In particular, it deforms the lattice Λk and the

twists ãiêi, b̃iêi by a matrix O from O(N,N):

Zde f orm,cl ∝ ΘOΛ(Oãiêi,Ob̃iêi, τ) (3.34)

However, Oãiêi = (αi/k)(Oêi). We notice that the coordinates αi/k do not change at all

after the deformation.

Here we must consider seriously which O matrices can quantitatively change the

theta function. First of all we want to know which matrices O fix the theta function.

Apparently, if OΛ = Λ then it does not change the theta function; this group of

matrices live in O(N,N,Z)[12]. Another option is that O does change the lattice, but
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holds |λ±|2 fixed; this group of elements live in O(N) × O(N).

In short, the space of matrices O1 that quantitatively change the Siegel-Narain theta

function live in the double coset space, which is the moduli space we consider in this

thesis:

MWZW = O(N) × O(N)\O(N,N)/O(N,N,Z) (3.35)

Furthermore, it can be shown that the effect of O on Λ is simply changing G and B.

It is thus worth defining a quantity involving the coordinates of the twist elements and

the moduli of the lattice:

fΛ,k(ri, si, τ) =
∑

wi,ni∈Z

exp
(
−

2πiτ1

k
wi(kn+s)i+

2πi
k

wiri−2πτ2(Gi jvivk+Gi j(
kn + s

2k
)i(

kn + s
2k

) j)
)

(3.36)

where

vi = wi −
Bi j(kn + s) j

2k
(3.37)

And thus

ΘOΛ(
αiêi

k
,
βiêi

k
, τ) = fOΛ,k(αi, βi, τ) (3.38)

An important quantity is the metric of the Narain lattice. For OΛ the (negative) inner

product in the (wi, ni) representation is

2S 0 = −

 0 I

I 0

 (3.39)

Note the factor of 2!

We notice that Θ to f correspondence is not unique. In fact, it is true up to a scaling:

fOΛ,k(αi, βi, τ) = ΘOΛ(
αiêi

k
,
βiêi

k
, τ) = fOΛ,1

(
αi

k
,
βi

k
, τ

)
(3.40)

1We note that the true moduli space of the deformed WZW model is actually infinitely larger because
not all matrices in O(N,N,Z) fix the OPE coefficients. This will not be a problem here because we are
only concerned about averaging the partition function; taking our smaller moduli space is the same as
taking a regulator for the larger moduli space.
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A mathematician-friendly notation for the functions fOΛ,1(0, si, τ) is

fOΛ,1(0, si, τ) = fH,S (s, τ) =
∑

x∈Z2N

exp
(
2πiτ1S [x + s] − 2πτ2H[x + s]

)
(3.41)

in which S is half the negative metric

S = −
1
2

 0 I

I 0

 (3.42)

and

H =

 G−1 1
2G−1B

−1
2 BG−1 1

4 (G − BG−1B)

 (3.43)

in which

S [x + s] = (x + s) · S · (x + s), H[x + s] = (x + s) · H · (x + s) (3.44)

The representation we are using is

x = (wi, ni), s = (0, si) (3.45)

In the new notation, there are further rescaling relations:

fH,S (s, τ) = faH,aS

(
s,
τ

a

)
(3.46)

In the original notation of the lattice moduli G and B, it corresponds to fixing the moduli,

and considering a larger lattice ê′i →
√

aêi, ê∗i
′

=
√

aê∗i, whilst keeping all coordinates

ni,wi, si fixed.

The two subscipts H and S must satisfy the following relation:

H · S −1 · H = S (3.47)

Notice that S is fixed up to a scaling throughout, but H is explicitly dependent on G and

B. Hence, actually there are three equivalent ways of describing the moduli space we

are considering, which we conjecture to be a finite volume submoduli space of the total

moduli space of the deformed WZW model.
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1. The double coset space O(N) × O(N)\O(N.N)/O(N,N,Z);

2. The whole space of G and B;

3. The whole space of positive definite matrices H s.t. HS −1H = S .

The second description is most useful for us if we care about a specific point in the

moduli space; the third description is most useful when we do the averaging procedure.
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CHAPTER 4

THE AVERAGING PROCESS

In this section, we will carry out the averaging process for the twisted partition functions

fOΛ,k(αi, βi, τ). In particular, the averaging process is known to the mathematicians as

the Siegel-Weil formula. This formula describes the relationship of averaged Siegel-

Narain theta functions and an Eisenstein series. In this chapter, we will investigate

multiple ways to extend the Siegel-Weil formula first found in Refs. [24, 25, 27, 28]

and described in detail in Ref. [26], and their application to the average of the deformed

WZW partition function.

4.1 The Averaging of partition functions Zb,cl
0,β

We recall that Zb
0,β = |η(q)|−2N fH,S ( b

k , τ) = |η(q)|−2N fkH,kS ( b
k ,

τ
k ), in which the Narain twist

p = 0, q = b/k = (0, βi)/k. We would like to average over the entire set of positive

definite H satisfying the relation HS −1H = S . It is worth noting that, the Siegel-Weil

formula is only applicable when 2S q has integer entries; since q has entries of integers

divided by k, we use our rescaling technique introduced in the last section to scale S and

H by k times so that this criteria is satisfied. One can in general prove that scaling by `k

times gives the same result for arbitrary ` ∈ Z+.

Before actually introducing the Siegel-Weil formalism, we note that there are short-

cuts via the method of integration by parts one can use to do the averaging, which is

described in the appendix. That method is especially powerful in the case of b , 0.
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The Siegel-Weil formalism tells us that

f̄ (0,
b
k
, τ) =

∫
dH fkH,kS (

b
k
,
τ

k
)

= γb +
1

kN

∑
(c,d)=1,d>0

d−2N(
τ

k
−

c
d

)−N/2(
τ̄

k
−

c
d

)−N/2
∑

g mod d

exp(2πi
c
d

S [g +
b
k

])

(4.1)

in which g is a 2N dimensional Z/dZ valued vector and γb = 0 unless b = 0, in which

case γb = 1. We note that pairs (c, d) where d > 0 can be mapped to elements in

S L(2,Z). That is, we write matrices in S L(2,Z) as

γ =

 f g

c −d

 (4.2)

We simplify the last sum of phases as follows. First we write g = (m, n) in which m, n

are N dimensional integer mod d vectors:∑
g mod d

exp(2πi
c
d

kS [g +
b
k

]))

=
∑

m,n mod d

exp(2πi
c
d

km · (n +
b
k

))

=

N∏
i=1

d∑
mi,ni=1

exp(2πi
c
d

kmi(ni +
bi

k
))

=

N∏
i=1

d∑
ni=1

1 − exp(2πicbi)

1 − exp(2πi c
d k(ni + bi

k ))

(4.3)

We note that this expression is zero if the denominator is not zero because the numerator

is always zero. When the denominator is zero, the fraction is d by l’Hospital’s rule.

And thus ∑
g mod d

exp(2πi
c
d

kS [g +
b
k

]))

=dN
N∏

i=1

# sols of kni + bi mod d = 0

(4.4)

where ni ∈ Z/dZ.

And now we have a lemma:
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Lemma 1. The number of solutions of

kx + b mod d = 0 (4.5)

is equal to (k, d) when (k, d)|b; otherwise it is zero.

Proof. When (k, d) does not divide b, the equation obviously has no solutions; any solu-

tion would introduce a paradox because one side is divisible by (k, d) and the other side

is not.

Otherwise consider first the case (k, d) = 1. The proposition is obvious because k is

multiplicative invertible mod d.

Suppose a = (k, d) , 1. Define k′ = k/a, d′ = d/a, b′ = b/a. Then the equation

k′x + b′ mod d′ = 0 (4.6)

has exactly one solution; call that x0. This means k′x0 + b′ = cd′, or kx0 + b = cd.

Consider any solution of the original equation y; that means ky + b = d. This means

that k′(y − x0) = (d − c)d′ This means that y − x0 is divisible by d′. Thus, y = x0 + pd′;

since y ∈ Z/dZ, p can take values from 1 to a. This means that there are a = (d, k)

solutions.

�

In the end, we are able to collect all the terms:

f̄ (0,
b
k
, τ) = γb +

1
kN

∑
(c,d)=1,d>0

d−N(
τ

k
−

c
d

)−N/2(
τ̄

k
−

c
d

)−N/2
N∏

i=1

# sols of kni + bi mod d = 0

= γb +
1

kN

∑
(c,d)=1,d>0

d−N(
τ

k
−

c
d

)−N/2(
τ̄

k
−

c
d

)−N/2(k, d)Nδ(b mod (k, d))

= γb +
1

kN

∑
(c,d)=1,d>0

d−N(
τ

k
−

c
d

)−N/2(
τ̄

k
−

c
d

)−N/2(k, d)Nδ(cb mod (k, d))

(4.7)
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The last line is true because b has entries less than or equal to k, and (c, d) = 1. Now we

write k = (k, d)p, d = (k, d)q, (p, q) = 1. Furthermore we note that (pc, q) = 1. Then

f̄ (0,
b
k
, τ) = γb +

∑
(pc,q)=1,q>0

|qτ − pc|−Nδ(pcb mod k)

= γb +
∑

(c,d)=1,c>0

|cτ − d|−Nδ(db = 0 mod k)
(4.8)

in which in the last equality we have renamed all the variables. It is worth mentioning

that the renaming of the variables do not cause any multiplicity troubles. That is, there

is a bijection between pairs (c, d) and pairs (pc, q): the map from left to right is the

definition. The map from the right to left is by observing that (k, pc) = p(k/p, c) =

p((k, d), c) = p, so (k, p) = k/(k, pc) and thus d = k/(k, pc)q, c = pc/(k, pc).

This completes the averaging process for Zb,cl
0,β .

4.2 The Averaging of partition functions Zb,cl
α,β

We note the following identity of Theta functions:

fΛ,1(
α

k
,
β

k
, τ) =

∑
h mod k

e−4πih·S ·a/k fH,S (
h
k

+
b
k2 , k

2τ) =
∑

h mod k

e−4πih·S ·a/k fk3H,k3S (
h
k

+
b
k2 ,

τ

k
)

(4.9)

in which the quantities a, b are defined similarly: a = (0, αi), b = (0, βi). We have thus

reduced the averaging to the procedure in the previous section. Note that an k2 rescal-

ing would have been sufficient for the requirement of the averaging process because

2k2S (h/k + b/k2) have integer entries; we used a k3 scaling to simplify the following

calculations.
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We can thus calculate the average

f̄ (
a
k
,

b
k
, τ) = γb+

1
k3N

∑
(c,d)=1,d>0

d−2N |
τ

k
−

c
d
|−N

∑
h mod k

∑
g mod d

exp(2πi
c
d

k3S [g+
h
k

+
b
k2 ]−4πih·S ·a/k)

(4.10)

Again, we focus on the sum of phases.∑
h mod k

∑
g mod d

exp(2πi
c
d

k3S [g +
h
k

+
b
k2 ] − 4πih · S · a/k)

=
∑

h mod k

∑
g mod d

exp(2πi
c
d

kS [kg + h +
b
k
−

da
ck2 ])

=
∑

m mod dk

exp(2πi
c
d

kS [m +
b
k
−

da
ck2 ])

=
∑

h mod k

∑
g mod d

exp(2πi
c
d

kS [g + dh +
b
k
−

da
ck2 ])

(4.11)

In the second line we used the fact that S [a] = S [b] = a · S · b = 0.

Thus ∑
h mod k

∑
g mod d

exp(2πi
c
d

kS [g + dh +
b
k
−

da
ck2 ])

=
∑

h mod k

exp(−4πi
d
k

h · S · a)
∑

g mod d

exp(2πi
c
d

kS [g +
b
k
−

da
ck2 ])

(4.12)

Hence, we can do the two sums separately.∑
h mod k

exp(−4πi
d
k

h · S · a)
∑

g mod d

exp(2πi
c
d

kS [g +
b
k
−

da
ck2 ])

=k2Nδ(da mod k)
∑

g mod d

exp(2πi
c
d

kS [g +
b
k
−

da
ck2 ])

=k2Nδ(da mod k)dN(kc, d)Nδ(cb −
da
k

mod (kc, d))

=k2NdN(k, d)Nδ(cb −
da
k

mod (k, d))

(4.13)

in which we have omitted the exponential sum that’s exactly the same as the last section.

It is worth noting that in the last equality the two delta functions merge: if da . 0 mod k

then the last delta function can never be satisfied.
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We can thus plug this result back into the average:

f̄ (
a
k
,

b
k
, τ) = γb +

1
kN

∑
(c,d)=1,d>0

d−N(k, d)N |
τ

k
−

c
d
|−Nδ(cb −

da
k

mod (k, d)) (4.14)

Similarly we write k = (k, d)p, d = (k, d)q, (p, q) = 1. Thus

f̄ (
a
k
,

b
k
, τ) = γb +

∑
(c,d)=1,d>0

|qτ − pc|−Nδ(pcb − qa mod k)

= γb +
∑

(c,d)=1,c>0

|cτ − d|−Nδ(ca − db mod k)
(4.15)

which is the final expression for the averaged classical partition function of the twisted

boson.

4.3 Shortcut via modular property

We need to observe the following properties of the quantum partition function of the

twisted boson. For a modular transformation γ =

 f g

c −d

, we introduce the shorthand

γτ =
f τ + g
cτ − d

and . It is known in Ref. [17] that

|η(τ)|−2NΘΛ

(
a
k
,

b
k
, τ

)
= |η(γτ)|−2NΘΛ

(
f a + gb

k
,

ca − db
k

, γτ

)
(4.16)

A more convenient representation is

ΘΛ

(
a
k
,

b
k
, τ

)
= |cτ − d|−NΘΛ

(
f a + gb

k
,

ca − db
k

, γτ

)
(4.17)

We note that the twists transform under the modular transformation as a

b

→
 f a + gb

ca − db

 = γ ·

 a

b

 (4.18)

By the Hardy-Littlewood circle method, we know that the dominant contribution of the

Theta functions are given around the rational numbers of the form d/c; in particular, the
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Siegel-Weil formula tells us that after averaging, the only contributions left are the sin-

gularities around rational numbers. We thus proceed to determine the singular structure

of the averaged theta function, f̄ around rational numbers.

First of all we note that

f̄
(
a
k
,

b
k
, τ

)
= |cτ − d|−N f̄

(
f a + gb

k
,

ca − db
k

, γτ

)
(4.19)

Thus

f̄
(
a
k
,

b
k
,

d
c

+ iε
)

= |cε |−N f̄
(

f a + gb
k

,
ca − db

k
, i∞

)
(4.20)

We note that

ΘΛ(r, s,∞) = δ(s mod 1) (4.21)

And thus

f̄ (r, s,∞) = δ(s mod 1) (4.22)

Which means that

f̄
(
a
k
,

b
k
,

d
c

+ iε
)

= |cε |−Nδ(ca − db mod k) (4.23)

Define the usual notation Γ = S L(2,Z). By the Siegel-Weil formula the final average is

given by summing over these singularities:

f̄
(
a
k
,

b
k
, τ

)
=

1
2

∑
(c,d)=1

|cτ − d|−Nδ(ca − db mod k)

=
∑

γ∈Γ/Γ0(∞)

τ−N/2
2 Im(γτ)N/2δ(ca − db mod k)

(4.24)

The 1/2 factor accounts for the multiplicity generated by (c, d) and (−c,−d). Γ0(∞) is

defined as

Γ0(∞) =


 a b

c d

 ∈ Γ

∣∣∣∣∣∣∣∣∣ c = 0

 (4.25)

The γb term is obtained by taking the identity term.
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4.4 Final Average: Form 1

The average of the deformed WZW partition functions is obtained by replacing the

twisted boson partition functions with the averaged ones.

Z̄WZW(τ) =
1

kN

∑
α,β

ZPF
α,β(τ)|η(τ)|−2N f̄

(
a
k
,

b
k
, τ

)

=
1

kN

∑
α,β

∑
γ∈Γ/Γ0(∞)

ZPF
α,β(τ)

τ−N/2
2 Im(γτ)N/2

|η(τ)|2N δ(ca − db mod k)
(4.26)

in which the matrix is written as

γ =

 f g

c −d

 (4.27)

in which we have used the identity that

τ−N/2
2 Im(γτ)N/2 = |cτ − d|−N (4.28)

Fix γ. Recall the action  νφ
 = γ

 αβ
 =

 fα + gβ

cα − dβ

 (4.29)

Since we know that the first N components of a and b are zero, now we also call the last

N components of a and b by a and b respectively. The meaning is clear by the context;

in the second context, a is the coordinates of α in the root lattice, and b is the coordinates

of β in the root lattice. Since α, β ∈ Q/kQ, a, b ∈ (Z/kZ)N . We note that

γ−1γ = I, (4.30)

before and after taking modulo k. Hence γ is bijection of the set of pairs (a, b) which is

isomorphic to (Z/kZ)2N .

On the other hand, we deduce from modular invariance of the entire WZW partition

function that

ZPF
α,β(τ) = ZPF

ν,φ (γτ) (4.31)
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and thus

Z̄WZW(τ) =
1

kN

∑
γ∈Γ/Γ0(∞)

∑
ν,φ∈Q/kQ

ZPF
ν,ρ (γτ)τ−N/2

2 Im(γτ)N/2δ(ca − db mod k)/|η(τ)|2N

=
1

kN

∑
γ∈Γ/Γ0(∞)

∑
ν,φ∈Q/kQ

ZPF
ν,φ (γτ)τ−N/2

2 Im(γτ)N/2δ(φ ∈ kQ)/|η(τ)|2N

=
1

kN

∑
γ∈Γ/Γ0(∞)

∑
ν∈Q/kQ

ẐPF
ν,0 (γτ)τ−N/2

2 Im(γτ)N/2/|η(τ)|2N

=
1

kN

∑
γ∈Γ/Γ0(∞)

∑
ν∈Q/kQ

∑
µ∈P/kP,λ∈Ω+

k

exp(
2πi
k
µ · ν)|η(γτ)|2N |cλµ(γτ)|2τ−N/2

2 Im(γτ)N/2/|η(τ)|2N

=
∑

γ∈Γ/Γ0(∞)

∑
λ∈Ω+

k

|cλ0(γτ)|2τ−N/2
2 Im(γτ)N/2

∣∣∣∣∣η(γτ)
η(τ)

∣∣∣∣∣2D

=
∑

γ∈Γ/Γ0(∞)

∑
λ∈Ω+

k

|cλ0(γτ)|2

(4.32)

We note that with the particular example of S U(N + 1)1, c0
0 = η−N while all other string

functions vanish; furthermore we know that S U(N +1)1 can be reduced to the untwisted

U(1)N free boson average. Plugging the string function into the equation above reduces

the answer to the result Eq. (5.8) in Ref. [2].

4.5 Final Average: Form 2 and Density of States

In this section, we fix the level k to be a prime number for simplicity.

We would like to calculate the averaged density of states of the averaged model. The

importance of this procedure is that, although we are averaging theories with positive

density of states, we do not want to get negative density of states due to some divergence

of integrals. In Ref. [18], theories of negative density of states appear, although they

have partition functions similar to Eq. (4.32).
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Recall that we would like to do the following sum

Z̄WZW(τ) =
1

kN

∑
α,β

ZPF
α,β(τ)|η(τ)|−2N f̄

(
a
k
,

b
k
, τ

)

=
|η(τ)|−2N

kN

ZPF
0,0 (τ) f̄ (0, 0, τ) +

∑
α,0

ZPF
α,0(τ) f̄

(a
k
, 0, τ

)
+

∑
α,β,0

ZPF
α,β(τ) f̄

(
a
k
,

b
k
, τ

)
(4.33)

We analyze the last term more carefully. We note that the last term where a and b are

both nonzero has a delta function that contains the form δ(ca − bd mod k). If we view

a and b as elements in (Z/kZ)N , then it can be viewed as a vector space over the field

Z/kZ; we see that a and b must be colinear in the sense that a = hb for some nonzero h.

If not, then the term contributing must be zero.

We thus rewrite the average above as

Z̄WZW(τ) =
|η(τ)|−2N

kN

ZPF
0,0 (τ) f̄ (0, 0, τ) +

∑
α,0

ZPF
α,0(τ) f̄

(a
k
, 0, τ

)
+

∑
α,0

k−1∑
h=0

ZPF
hα,α(τ) f̄

(
ha
k
,

a
k
, τ

)
(4.34)

We change the convention slightly from before s.t. the density of states is easier to

calculate:

f̄ (0, 0, τ) = 1 +
∑

(m,n)=1,m>0

|mτ + n|−N (4.35)

f̄
(a
k
, 0, τ

)
= 1 +

∑
(m,n)=1,m>0

|mτ + n|−Nδ(ma = 0 mod k)

= 1 +
∑

(m,n)=1

|kmτ + n|−Nχ0(n)
(4.36)

in which χ0(n) is the principal character over Z/kZ: it is 0 if n can be divided by k and

1 otherwise. The second equality is the fact that m in the first line must be a multiple

of k, otherwise the delta function is 0; however this means that n in the first line cannot

be divided by n, otherwise the greatest common denominator is k instead of 1. And we
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have the third term

f̄
(
0,

a
k
, τ

)
=

∑
(m,n)=1,m>0

|mτ + n|−Nδ(na = 0 mod k)

=
∑

(m,n)=1

|mτ + kn|−Nχ0(m)
(4.37)

And by the modular transformation formulas we have

f̄
(
ha
k
,

a
k
, τ

)
= f̄

(
0,

a
k
, τ − h

)
=

∑
(m,n)=1

|m(τ − h) + kn|−Nχ0(m) (4.38)

Now we use the trick of multiplying the series by some L function to turn this into a sum

over all integers; the Dirichlet L function for a multiplicative character χ is defined as

L(N, χ) =
∑

m∈Z,m>0

χ(m)
mN (4.39)

For the particular character χ0 above, we have the product expansion

L(N, χ0) =

∏
p(1 − p−N)
1 − k−N =

ζ(N)−1

1 − k−N (4.40)

We note that the partition functions shown in Eq. (4.36,4.37) are actually modular forms

of the subgroup Γ0(k) defined as

Γ0(k) =


 a b

c d

 ∈ Γ

∣∣∣∣∣∣∣∣∣ c = 0 mod k

 (4.41)

which is why we are able to calculate the Fourier transforms below. We also note that

the different choices of h in Eq. (4.38) combined with Eq. (4.35) is equivalent to the

choice of representatives of the quotient set Γ/Γ0(k), whose cardinality is k + 1.

As a warmup we will do the exercise of calculating the Fourier series of f (0, 0, τ)
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which is explicitly stated in Ref. [7]. We multiply it by ζ(N) and get

ζ(N) f (0, 0, τ) =ζ(N) +
∑

m>0,n

|mτ + n|−N

=ζ(N) +
∑
m>0

∑
c

m−1∑
d=0

1
mN |τ + c + d/m|N

=ζ(N) +
∑
m>0

m−1∑
d=0

1
mN

(
2π

Γ(N − 1)
Γ(N/2)2 |2τ2|

1−N

+
2πN/2

Γ(N/2)

∑
n,0

|τ2|
1/2−N/2|n|N/2−1/2KN/2−1/2(2π|n|τ2) exp(2πin(τ1 +

d
m

))
)

=ζ(N) + 22−Nπτ1−N
2 ζ(N − 1)

Γ(N − 1)
Γ(N/2)2

+
2πN/2

Γ(N/2)

∑
n,0

∑
m|n,m>0

1
mN−1 |τ2|

1/2−N/2|n|N/2−1/2KN/2−1/2(2π|n|τ2) exp(2πinτ1)

=ζ(N) + 22−Nπτ1−N
2 ζ(N − 1)

Γ(N − 1)
Γ(N/2)2

+
2πN/2

Γ(N/2)

∑
n,0

σ1−N(n)|τ2|
1/2−N/2|n|N/2−1/2KN/2−1/2(2π|n|τ2) exp(2πinτ1)

(4.42)

This is exactly Lemma. 5.2.11 in Ref. [7], with the application of the Legendre

duplication formula. Now we denote f0(τ) = f̄ (0, 0, τ).

Now we calculate the second term. We multiply it by the L function associated with

character χ0:

L(N, χ0) f̄
(a
k
, 0, τ

)
= L(N, χ0) +

∑
m,n∈Z,m>0

χ0(n)
1

|kmτ + n|N (4.43)
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Now we decompose n = kc + d and obtain

L(N, χ0) f̄
(a
k
, 0, τ

)
=L(N, χ0) +

∑
m>0

∑
c

k−1∑
d=0

χ0(d)
1

|kmτ + kc + d|N

=L(N, χ0) +
∑
m>0

∑
c

k−1∑
d=0

χ0(d)
kN

1
|mτ + c + d

k |
N

=L(N, χ0) +
∑
m>0

k−1∑
d=0

χ0(d)
kN

(
2π

Γ(N − 1)
Γ(N/2)2 |2mτ2|

1−N

+
2πN/2

Γ(N/2)

∑
n,0

|mτ2|
1/2−N/2|n|N/2−1/2KN/2−1/2(2π|n|mτ2) exp(2πin(mτ1 +

d
k

))
)

=L(N, χ0) +
22−NπΓ(N − 1)φ(k)

kNΓ(N/2)2 τ1−N
2 ζ(N − 1) +

2πN/2

kNΓ(N/2)
×

τ1/2−N/2
2

∑
j|k

µ(k/ j) jN/2+1/2
∑
n,0

σN−1(n)|n|1/2−N/2KN/2−1/2(2π|n| jτ2)e2πi jnτ1

=L(N, χ0) +
22−NπΓ(N − 1)φ(k)

kNΓ(N/2)2 τ1−N
2 ζ(N − 1)

+
2πN/2τ1/2−N/2

2

kNΓ(N/2)

(
−

∑
n,0

σN−1(n)|n|1/2−N/2KN/2−1/2(2π|n|τ2)e2πinτ1

+ kN/2+1/2
∑
n,0

σN−1(n)|n|1/2−N/2KN/2−1/2(2π|n|kτ2)e2πiknτ1
)
(4.44)

in which φ(k) = k−1 is the Euler function, and in the fourth equality we used the identity

that
k−1∑
d=0

χ0(d)e2πimd/k =
∑

r|(m,k)

µ

(
k
r

)
r (4.45)

The last step comes from definition of the Mobius function. The derivation above re-

produces the derivation in Ref. [15]. We note that the final fourier transform above is

independent of the choice of the temporal twist a. We thus define f (τ) = f̄
(

a
k , 0, τ

)
.

For the other term, we also use the trick to get first

L(N, χ0) f̄
(
0,

a
k
, τ

)
=

∑
m,n∈Z,m>0

χ0(m)
1

|mτ + kn|N
=

∑
(m,n)∈Z2,m>0

χ0(m)
kN

1
|mτ/k + n|N

(4.46)
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For this term, we decompose n = mc + d, and get

L(N, χ0) f̄
(
0,

a
k
, τ

)
=

∑
m>0

∑
c

m−1∑
d=0

χ0(m)
kN

1
|mτ/k + mc + d|N

=
∑
m>0

∑
c

m−1∑
d=0

1
kN

χ0(m)
mN

1
| τk + c + d

m |
N

=
∑
m>0

m−1∑
d=0

1
kN

χ0(m)
mN

(
2π

Γ(N − 1)
Γ(N/2)2

∣∣∣∣∣2τ2

k

∣∣∣∣∣1−N

+
2πN/2

Γ(N/2)

∑
n,0

∣∣∣∣∣τ2

k

∣∣∣∣∣1/2−N/2

|n|N/2−1/2KN/2−1/2

(
2π
|n|τ2

k

)
exp

(
2πin

(
τ1

k
+

d
m

))
=

1
kN

2πN/2

Γ(N/2)

∑
n,0

∑
m|n,m>0

χ0(m)
mN−1

∣∣∣∣∣τ2

k

∣∣∣∣∣1/2−N/2

|n|N/2−1/2KN/2−1/2

(
2π
|n|τ2

k

)
exp

(
2πin

τ1

k

)
+

∑
m>0

2πm
kN

Γ(N − 1)
Γ(N/2)2

∣∣∣∣∣2τ2

k

∣∣∣∣∣1−N

=
2πN/2 |τ2|

1/2−N/2

kN/2+1/2Γ(N/2)

∑
n,0

|n|N/2−1/2σ1−N(n, χ0)KN/2−1/2

(
2π
|n|τ2

k

)
exp

(
2πin

τ1

k

)
+

22−NπΓ(N − 1)τ1−N
2

kΓ(N/2)2 L(N − 1, χ0)

(4.47)

where

σ1−D(n, χ0) =
∑

m|n,m>0

m1−Dχ0(m) (4.48)

is the divisor function. Again, we note that the final result is independent of a. We define

g(τ) = f̄
(
0, a

k , τ
)
. We note that g(τ − h) = f̄

(
ha
k ,

a
k , τ

)
.

Furthermore, we note that f0 and f have period 1, while the function g has period k.

This will be important in the discussion later.

We would like to do the following sum

Z̄WZW(τ) =
1

kN

∑
α,β

ZPF
α,β(τ)|η(τ)|−2N f̄

(
a
k
,

b
k
, τ

)
=

1
kN

∑
λ,µ

∑
α,β

eπiα·(2µ−β−B0β)/kcλµc̄
λ
µ+β f̄

(
a
k
,

b
k
, τ

)
(4.49)

The formula for cλµ is generally hard. Again, we would like to break the terms above into
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the three parts as Eq. (4.34). The first term is trivial: it is simply
∑
λ,µ |cλµ(τ)|2 f0(τ)/kN .

As for the second term, we note that

1
kN

∑
λ,µ

∑
α,0

e2πiα·µ/k|cλµ|
2 f (τ) =

f (τ)
kN

kN
∑
λ

|cλ0 |
2 −

∑
λ,µ

|cλµ|
2

 (4.50)

Suppose the fourier transform of g(τ) is

g(τ) =

∞∑
l=−∞

gl(τ2)e2πil τ1
k (4.51)

in which we can read out that if l = 0,

g0(τ2) =
22−NπΓ(N − 1)τ1−N

2

kΓ(N/2)2

L(N − 1, χ0)
L(N, χ0)

(4.52)

and

gl(τ2) =
2πN/2 |τ2|

1/2−N/2

kN/2+1/2Γ(N/2)L(N, χ0)
|l|N/2−1/2σ1−N(l, χ0)KN/2−1/2

(
2π
|l|τ2

k

)
(4.53)

And thus

g(τ − h) =

∞∑
l=−∞

gl(τ2)e2πil τ1−h
k (4.54)

which means that

|η(τ)|−2N

kN

∑
α,0

k−1∑
h=0

ZPF
hα,α(τ) f̄

(
ha
k
,

a
k
, τ

)

=
1

kN

∑
α,0

k−1∑
h=0

∑
λ,µ

e−πihα·(2µ+α)/kcλµc
λ
µ+α

∞∑
l=−∞

gl(τ2)e2πil x−h
k

=k1−N
∑
α,0

∑
λ,µ

∞∑
l=−∞

cλµc
λ
µ+αgl(τ2)e2πil τ1

k δ(l + α · µ + |α|2/2 mod k)

(4.55)

Collecting all the terms, we have

Z̄WZW(τ) =
∑
λ

|cλ0 |
2
(

f0(τ)
kN +

(
1 −

1
kN

)
f (τ)

)
+

∑
λ,µ,0

|cλµ|
2 f0(τ) − f (τ)

kN

+ k1−N
∑
α,0

∑
λ,µ

∞∑
l=−∞

cλµc
λ
µ+αgl(τ2)e2πil τ1

k δ(l + α · µ + |α|2/2 mod k)
(4.56)
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We thus define

h1(τ) =
f0(τ)
kN +

(
1 −

1
kN

)
f (τ), h2(τ) =

f0(τ) − f (τ)
kN (4.57)

We then study the properties of h1 and h2.

We note that

f (τ) =1 +
22−NπΓ(N − 1)φ(k)τ1−N

2

(kN − 1)Γ(N/2)2

ζ(N − 1)
ζ(N)

+
2πN/2τ1/2−N/2

2

(kN − 1)Γ(N/2)ζ(N)

(
−

∑
n,0

σ1−N(n)|n|N/2−1/2KN/2−1/2(2π|n|τ2)e2πinτ1

+ kN/2+1/2
∑
n,0

σ1−N(n)|n|N/2−1/2KN/2−1/2(2π|n|kτ2)e2πiknτ1
)

(4.58)

in which we used the property that

σ1−N(n)|n|N/2−1/2 = σN−1(n)|n|1/2−N/2 (4.59)

and the relationship between ζ(N) and L(D, χ0).

And thus

h1(τ) =
f0(τ)
kN +

(
1 −

1
kN

)
f (τ)

=1 +
π22−Nτ1−N

2

kN

ζ(N − 1)
ζ(N)

Γ(N − 1)
Γ(N/2)2 + φ(k)

22−Nπτ1−N
2

kN

ζ(N − 1)
ζ(N)

Γ(N − 1)
Γ(N/2)2

+
2πN/2τ1/2−N/2

2

kNΓ(N/2)ζ(N)
kN/2+1/2

∑
n,0

σ1−N(n)|n|N/2−1/2KN/2−1/2(2π|n|kτ2)e2πiknτ1

=1 +
22−Nπτ1−N

2

kN−1

ζ(N − 1)
ζ(N)

Γ(N − 1)
Γ(N/2)2

+
2πN/2τ1/2−N/2

2

kNΓ(N/2)ζ(N)
kN/2+1/2

∑
n,0

σ1−N(n)|n|N/2−1/2KN/2−1/2(2π|n|kτ2)e2πiknτ1

(4.60)
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For h2(τ), we have

h2(τ) =
f0(τ) − f (τ)

kN

=
22−NπΓ(N − 1)τ1−N

2

kNΓ(N/2)2

ζ(N − 1)
ζ(N)

(
1 −

φ(k)
kN − 1

)
+

2πN/2τ1/2−N/2
2

(kN − 1)Γ(N/2)ζ(N)

 ∑
n,0,k 6|n

σ1−N(n)|n|N/2−1/2KN/2−1/2(2π|n|kτ2)e2πiknτ1

+
∑
n,0

(σN−1(kn) − σN−1(n)) |kn|1/2−N/2KN/2−1/2(2π|n|kτ2)e2πiknτ1


(4.61)

And thus in the end we have

Z̄WZW(τ) =
∑
λ

|cλ0 |
2h1(τ) +

∑
λ,µ,0

|cλµ|
2h2(τ) + k1−N

∑
λ,µ,α,0

∞∑
l=−∞

cλµc
λ
µ+αgl(τ2)e2πil τ1

k δ(l + α · µ + |α|2/2 mod k)

(4.62)

We note that in the last term of the expression above, although the exp(2πilτ1/k) might

not be periodic when τ1 → τ1 + 1,

cλµc
λ
µ+α = qmλ̂(µ̂)q̄mλ̂(µ̂+α̂)

∞∑
n=0

anqn = e2πiτ1(|λ+α|2−|λ|2)/2ke−2πτ2(mλ̂(µ̂)+mλ̂(µ̂+α̂))
∞∑

n=0

anqn (4.63)

Combining the two equations above, we find that the last term is explicitly periodic

when τ1 → τ1 + 1. This concludes our calculation of the averaged partition function.

We note that since the functions K have positive Laplace transform, and all coef-

ficients in h1, h2 are positive, the density of states is given by the convolution of the

density of states with the Laplace transforms of K. Since the convolution of two posi-

tive functions is positive, we conclude that our averaged theory has positive density of

states.
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CHAPTER 5

CONCLUSION

In conclusion, we have computed the average partition function of the deformed S U(N+

1)k WZW model over the Narain moduli space. As it bears the form of a Poincaré series,

it strongly suggests the possibility to interpret it as a gravitational theory, in particular, a

U(1) Chern-Simons gravity theory mentioned in Ref. [2] coupled to matter fields similar

to parafermions.

Using the ideas presented in this thesis, one can in general carry out averaging proce-

dures completely similar in other scenarios. For example, current-current deformations

in supersymmetric CFTs are also marginal; one can average over those deformations by

writing the theories as an orbifold theory of the bosons and another theory, and then av-

erage over the bosons. This would generate a large family of possible dualities between

gravitational theories and an ensemble average of CFTs.

Another important aspect is to compute physical quantities, such as correlation func-

tions, in the averaged theory. We note that fields corresponding to the bosons in such

theories are moduli dependent and thus their correlation functions are hard to compute

after the average; luckily, in this scenario, the parafermion fields are independent of the

moduli. Another possibility is to consider the twist field; a calculation of correlation

functions of Z2 twist fields is recently studied in Ref. [5]. We should also pay attention

to the correlation functions of partition functions 〈ZZ〉 as well, which may hint at the

existence of wormholes in the corresponding gravitational theories. A further attempt

is to study averaged theories with chemical potentials; the most recent progress in this

direction made in the bosonic theories is Ref. [9]. It would also be fruitful to calculate

the density of states for non prime levels and higher genus partition function; in particu-

lar, if a holographic bulk gravity theory were to be constructed, we would have to know
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about higher genus partition functions on the boundary.
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APPENDIX A

HOW TO AVOID OVERCOUNTING THE VACUUM

We recall that in Ref. [12, 13] the twisted partition function of the parafermions is

defined as

ZPF′
α,β = |η(q)|2N

∑
λ∈Ω+

k

∑
µ∈P/kQ

e−πiα·(2µ−β)/kcλµ(q)c̄λµ−β(q̄) (A.1)

We find that the phase is ambiguous: it is representative dependent. That problem is

solved by including the B0 field, as shown in Section 3.1.2. We further find that the

coefficient of the vacuum term of this partition function does not have modulus 1, which

is unnatural. Our definition for the parafermion partition function, which avoids both of

these caveats, is

ZPF
α,β = |η(q)|2N

∑
λ∈Ω+

k

∑
µ∈P/kP

e−πiα·(2µ−β)/k+πiαi(B1)i jβ
j/kcλµ(q)c̄λµ−β(q̄) (A.2)

so we aim to prove that for fixed representatives α, β,

(N + 1)ZPF
α,β = eπiαi(B1)i jβ

j/kZPF′
α,β (A.3)

The derivation makes use of the outer automorphisms. Recall that with ŝu(N + 1)k the

automorphism group O(ŝu(N + 1)k) � ZN+1; denote the generator by a. an applies an the

action of the outer automorphisms apply a Weyl transformation wan to the weights and

then shifts it by δn ≡ kωan , with the temporary definition that ω0 = 0.

And thus, since {kωi} = kP/kQ, we have for fixed µ ∈ P/kP and δA ∈ kP/kQ:∑
λ∈Ω+

k

cλµ+δA
c̄λµ+δA−β

=
∑
λ∈Ω+

k

cA−1λ
w−1

A µ
c̄A−1λ

w−1
A (µ−β)

=
∑
λ∈Ω+

k

cA−1λ
µ c̄A−1λ

µ−β

=
∑
λ∈Ω+

k

cλµc̄
λ
µ−β

(A.4)

47



In the second and third line we used Eq. (2.51); in the last line we used the fact that A is

a symmetry of the set Ω+
k .

Now we see why the vacuum is overcounted. Basically, originally the vacuum term

is given by |c0
0|

2. However, by applying outer automorphisms, |ckωi
kωi
|2 = |c0

0|
2 also con-

tributes the same to the vacuum coefficient.

And thus

(N + 1)ZPF
α,β = (N + 1)|η(q)|2N

∑
λ∈Ω+

k

∑
µ∈P/kP

e−πiα·(2µ−β)/k+πiαi(B1)i jβ
j/kcλµ(q)c̄λµ−β(q̄)

= |η(q)|2N
∑
λ∈Ω+

k

∑
δ∈kP/kQ

∑
µ∈P/kP

e−πiα·(2µ+2δ−β)/k+πiαi(B1)i jβ
j/kcλµ+δ(q)c̄λµ+δ−β(q̄)

= |η(q)|2N
∑
λ∈Ω+

k

∑
µ∈P/kQ

e−πiα·(2µ−β)/k+πiαi(B1)i jβ
j/kcλµ+δ(q)c̄λµ+δ−β(q̄)

= eπiαi(B1)i jβ
j/kZPF′

α,β

(A.5)
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